whenever $n > n_0$. Therefore,

$$\left| \int_{x_n}^{y_n} f(t)dt - f(c)(y_n - x_n) \right| \le \int_{x_n}^{y_n} |f(t) - f(c)| dt \le \epsilon |y_n - x_n|.$$

Note that the given integral equals

$$I_n=n\int_{rac{n}{\sqrt[N-1]{(n+1)^2}}}^{n}f(t)dt,$$

this comes directly from the substitution $t = \frac{x}{n}$. Let x_n, y_n be the lower, upper bound of the last integral respectively then $x_n, y_n \to e$, since $\frac{n}{\sqrt[n]{n!}} \to e$, and thus

$$\frac{(n+1)^2}{n^{n+1}\sqrt{(n+1)!}} = \frac{n+1}{n} \frac{(n+1)}{\sqrt[n+1]{(n+1)!}} \longrightarrow e, \text{ as } n \longrightarrow \infty. \text{ Note that by Stolz' theorem}$$

$$n(y_n - x_n) = \frac{(n+1)^2}{\binom{n+1}{\sqrt{(n+1)!}}} - \frac{n^2}{\sqrt[n]{n!}} \longrightarrow e$$
, as $n \longrightarrow \infty$.

By the lemma we have

$$I_n = n[f(c)(y_n - x_n) + O(y_n - x_n)] = ef(e) + O(1),$$

which proves that the limit equals ef(e).

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China; Soumitra Mandal, Scottish Church College, Chandan -Nagar, West Bengal, India; Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova, Varna, Bulgaria, and the proposers.

5467: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

In an arbitrary triangle $\triangle ABC$, let a, b, c denote the lengths of the sides, R its circumradius, and let h_a, h_b, h_c respectively, denote the lengths of the corresponding altitudes. Prove the inequality

$$\frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\geq \frac{3abc}{2R}\sqrt[3]{\frac{1}{h_a\cdot h_b\cdot h_c}},$$

and give the conditions under which equality holds.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy

We know that $h_a = (bc)/(2R)$ and cyclic so the inequality actually is

$$\frac{a^2 + bc}{b + c} + \frac{b^2 + ca}{c + a} + \frac{c^2 + ab}{a + b} \ge \frac{3abc}{2R} \left(\frac{8R^3}{(abc)^2}\right)^{\frac{1}{3}} = 3(abc)^{\frac{1}{3}}.$$

We prove the stronger one

$$\frac{a^2 + bc}{b + c} + \frac{b^2 + ca}{c + a} + \frac{c^2 + ab}{a + b} \ge a + b + c,$$

that is

$$\left(\frac{a^2+bc}{b+c}-a\right)+\left(\frac{b^2+ca}{c+a}-b\right)+\left(\frac{c^2+ab}{a+b}-c\right)\geq 0,$$

or

$$\frac{(a-b)(a-c)}{b+c} + \frac{(b-c)(b-a)}{a+c} + \frac{(c-a)(c-b)}{a+b} \ge 0.$$

We can suppose $a \ge b \ge c$ by symmetry so we come to

$$\frac{(a-b)(a-c)}{b+c} + \frac{(a-c)(b-c)}{a+b} \ge \frac{(a-b)(b-c)}{a+c}.$$

This is implied by

$$\frac{(a-b)(a-c)}{b+c} + \underbrace{\frac{(a-b)(b-c)}{a+b}}_{a-c>a-b} \ge \frac{(a-b)(b-c)}{a+c},$$

or

$$\frac{a-c}{b+c} + \frac{b-c}{a+b} \ge \frac{b-c}{a+c}.$$

This is in turn implied by

$$\underbrace{\frac{a-c}{a+c}}_{a>b} + \frac{b-c}{a+b} \ge \frac{b-c}{a+c}$$

and this evidently holds true by $a-c \ge b-c \ge 0$. The equality case is a=b=c.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

We will prove the following slight improvement:

$$\frac{a^2 + bc}{b + c} + \frac{b^2 + ca}{c + a} + \frac{c^2 + ab}{a + b} \ge a + b + c$$

$$\ge 3\sqrt[3]{abc}$$

$$= \frac{3abc}{2R}\sqrt[3]{\frac{1}{h_a \cdot h_b \cdot h_c}}, \tag{1}$$

with equality if and only if a = b = c.

To begin, we note that

$$a^{4} + b^{4} + c^{4} - a^{2}b^{2} - b^{2}c^{2} - c^{2}a^{2} = \frac{(a^{2} - b^{2})^{2} + (b^{2} - c^{2})^{2} + (c^{2} - a^{2})^{2}}{2}$$

$$\geq 0,$$
(2)

with equality if and only if $a^2 = b^2 = c^2$. Since a, b, c > 0, it follows that equality is attained in (2) if and only if a = b = c.

Next, we use (2) to obtain

$$\frac{a^{2} + bc}{b + c} + \frac{b^{2} + ca}{c + a} + \frac{c^{2} + ab}{a + b}$$

$$= \frac{(a^{2} - b^{2}) + (b^{2} + bc)}{b + c} + \frac{(b^{2} - c^{2}) + (c^{2} + ca)}{c + a} + \frac{(c^{2} - a^{2}) + (a^{2} + ab)}{a + b}$$

$$= \frac{a^{2} - b^{2}}{b + c} + \frac{b^{2} - c^{2}}{c + a} + \frac{c^{2} - a^{2}}{a + b} + a + b + c$$

$$= \frac{(a^{2} - c^{2}) + (c^{2} - b^{2})}{b + c} + \frac{b^{2} - c^{2}}{c + a} + \frac{c^{2} - a^{2}}{a + b} + a + b + c$$

$$= (a^{2} - c^{2}) \left(\frac{1}{b + c} - \frac{1}{a + b}\right) + (b^{2} - c^{2}) \left(\frac{1}{c + a} - \frac{1}{b + c}\right) + a + b + c$$

$$= (a^{2} - c^{2}) \frac{a - c}{(a + b)(b + c)} + (b^{2} - c^{2}) \frac{b - a}{(b + c)(c + a)} + a + b + c$$

$$= \frac{(a^{2} - c^{2})^{2} + (b^{2} - c^{2})(b^{2} - a^{2})}{(a + b)(b + c)(c + a)} + a + b + c$$

$$= \frac{a^{4} + b^{4} + c^{4} - a^{2}b^{2} - b^{2}c^{2} - c^{2}a^{2}}{(a + b)(b + c)(c + a)} + a + b + c$$

$$\geq a + b + c, \tag{3}$$

with equality if and only if a = b = c.

Also, the Arithmetic - Geometric Mean Inequality implies that

$$a + b + c \ge 3\sqrt[3]{abc},\tag{4}$$

with equality if and only if a = b = c.

For the final step, let $K = area(\triangle ABC)$. Then,

$$K = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c$$

and hence,

$$h_a = \frac{2K}{a}$$
, $h_b = \frac{2K}{b}$, and $h_c = \frac{2K}{c}$.

Since $R = \frac{abc}{4K}$, we have

$$\frac{3abc}{2R}\sqrt[3]{\frac{1}{h_a \cdot h_b \cdot h_c}} = \frac{12KR}{2R}\sqrt[3]{\frac{abc}{8K^3}}$$

$$= \frac{6K}{2K}\sqrt[3]{abc}$$

$$= 3\sqrt[3]{abc}.$$
(5)

If we combine (3), (4), and (5), statement (1) follows and equality is attained throughout if and only if a = b = c.

Solution 3 by Arkady Alt, San Jose, CA

Let F = [ABC] (area) and let s be its semi-perimeter.

Since
$$h_a = \frac{2F}{a}$$
, $h_b = \frac{2F}{b}$, $h_c = \frac{2F}{c}$ and $abc = 4RF$ then

$$\sqrt[3]{rac{1}{h_ah_bh_c}} = \sqrt[3]{rac{abc}{8F^3}} = rac{1}{2F}\sqrt[3]{abc}$$
 and

$$\frac{3abc}{2R}\sqrt[3]{\frac{1}{h_ah_bh_c}} = 3\sqrt[3]{abc}.$$

Thus, original inequality becomes

(1)
$$\frac{a^2 + bc}{b + c} + \frac{b^2 + ca}{c + a} + \frac{c^2 + ab}{a + b} \ge 3\sqrt[3]{abc}.$$

Since
$$\frac{4a^2}{b+c} \ge 4a-b-c \iff (2a-b-c)^2 \ge 0$$
 we have

$$\sum_{cyc} \frac{a^2 + bc}{b + c} = \sum_{cyc} \frac{a^2}{b + c} + \sum_{cyc} \frac{bc}{b + c} \ge \sum_{cyc} \frac{4a - b - c}{4} + \sum_{cyc} \frac{bc}{b + c}$$

$$= \frac{a + b + c}{2} + \sum_{cyc} \frac{bc}{b + c} = \sum_{cyc} \left(\frac{b + c}{4} + \frac{bc}{b + c}\right) \ge \sum_{cyc} 2\sqrt{\frac{b + c}{4} \cdot \frac{bc}{b + c}}$$

$$= \sum_{cyc} \sqrt{bc} \ge 3\sqrt[3]{\sqrt{bc} \cdot \sqrt{ca} \cdot \sqrt{ab}} = 3\sqrt[3]{abc}.$$

Solution 4 by Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania, and Corneliu-Manescu Avram, Ploiesti, Romania

Assume that $a \geq b \geq c$.

First, we will prove that
$$\frac{a^2 + bc}{b + c} + \frac{b^2 + ca}{c + a} + \frac{c^2 + ab}{a + b} \ge a + b + c \iff$$

$$\frac{a^2 + bc}{b + c} - a + \frac{b^2 + ca}{c + a} - b + \frac{c^2 + ab}{a + b} - c \ge 0 \iff$$

$$\frac{(a - b)(a - c)}{b + c} + \frac{(b - c)(b - a)}{c + a} + \frac{(c - a)(c - b)}{a + b} \ge 0 \iff$$

$$(a - b)\left(\frac{a - c}{b + c} - \frac{b - c}{c + a}\right) + (b - a)\left(\frac{b - a}{c + a} - \frac{c - a}{a + b}\right) + (c - a)\left(\frac{a - c}{b + c} - \frac{b - c}{c + a}\right) \ge 0$$

$$(a - b)^2 \frac{a + b}{(b + c)(c + a)} + (b - c)^2 \frac{b + c}{(a + b)(c + a)} + (c - a)^2 \frac{c + a}{(a + b)(b + c)} \ge 0.$$

Then, it suffices to prove that

$$a = b = -c \ge rac{3abc}{2R} \sqrt[3]{rac{1}{h_a h_b h_c}} = rac{3abc}{2R} \sqrt[3]{rac{abc}{8S^3}} = rac{3abc}{2R} rac{1}{2S} \sqrt[3]{abc} = \sqrt[3]{abc},$$

which is the AM-GM inequality.

Equality holds for a = b = c.

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy Rehovot, Israel; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland; Neculai Stanciu, "George Emil Palade" School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

Editor's note: Hatef I. Arshagi's solution was dedicated to the memory of Mrs. Alieh Ataee.

5468: Proposed by Ovidiu Furdui and Alina Sintămărian, both at the Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions $f: \Re \to \Re$ with f(0) = 1 such that $f'(x) = f^2(-x)f(x)$, for all $x \in \Re$.

Solution 1 by Moti Levy, Rehovot, Israel

Let us differentiate both sides of the given differential equation,

$$f''(x) = -2f(-x)f'(-x)f(x) + f^{2}(-x)f'(x).$$
(1)

The following two equation are direct consequence of the original equation.

$$f'(-x) = f^{2}(x)f(-x), (2)$$

$$f^{2}(-x) = \frac{f'(x)}{f(x)}. (3)$$

After substitution of (2) and (3) in (1), we get differential equation (4) with initial conditions at x = 0,

$$f''(x) + 2f^{2}(x)f'(x) - \frac{(f'(x))^{2}}{f(x)} = 0, \quad f(0) = f'(0) = 1.$$
 (4)

By the substitution $f(x) = \sqrt{g(x)}$,

$$egin{align} f &= \sqrt{g}, \ f^{'} &= rac{1}{2\sqrt{g}}g^{'}, \ f^{''} &= rac{1}{2\sqrt{g}}g^{''} - rac{1}{4\left(\sqrt{g}
ight)^3}\left(g^{'}
ight)^2, \ \end{aligned}$$